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This paper deals with integrated antenna arrays combining a 3D primary surveillance radar (PSR) with a monopulse secondary surveillance radar (MSSR). The antenna arrays integration is briefly described. The synthesis methods of a cosecant squared vertical radiation pattern are investigated more deeply. Two synthesis methods are discussed: a Fourier synthesis and a phase synthesis. The description of different homogenous lines is presented and design of procedure of each distribution networks which consist of many power dividers is described. The measurement results of each manifold and methods of corrections are also presented and discussed.   
Keywords:	Antenna array Distribution network Monopulse secondary surveillance Radar Power divider Primary surveillance radar Radiation pattern synthesis   © 2015 IASE Publisher. All rights reserved.
	
1.	Introduction *The design of radars for Air Traffic Control (ATC) has a long tradition in the Czech Republic. Mainly Primary Surveillance Radars (PSR) in S band, Precise Approach Radars (PAR) and Secondary Surveillance Radars (SSR) were built and supplied to many countries all over the world (Schejbal et al., 1994; Bezousek and Schejbal, 2004). The primary and the secondary surveillance radars are frequently situated at the airport at one stand close to each other. Then it is advantageous to have the both radars integrated in one device with antennas collocated at the same turntable. During the past couple of years, the secondary radar antennas of such systems were located over the primary radar ones on the same pivots. In modern applications, secondary radars with sufficient earth reflection suppression, using large vertical SSR antenna apertures (Barton, 1988), are prevalent. It enlarges the total vertical dimension of the antenna system structure in described configuration and complicates the radar transportation mainly in the case of military applications. Integrated PSR/SSR reflector antennas occasionally emerged (Bezousek and Schejbal, 2004) but with no substantial spread due to inevitably compromised parameters.  Here we deal with a novel design of an antenna array, combining 3D primary surveillance radar antenna and monopulse secondary surveillance radar. This topology has an advantage in better mobility, lower height and better sufficient earth 
                                                 * Corresponding Author.  Email Address: tomas.shejbal@student.upce.cz (T. Shejbal)  

reflection suppression because of a high SSR aperture. The integration of the both antennas laid serious demands on the design and construction of the elements of the individual antennas.  The primary antenna, working in the S band (2.7 – 2.9 GHz) consists of 32 horizontal slotted waveguide rows each containing 75 radiating slots. Each waveguide is equipped with its own transmitter/receiver module and forms the same horizontal diagram. The transmitted signal covers all the elevation range at once through the favored cosecant vertical diagram. The bundle of the received beams is created beyond the receivers. The residual vertical polarization component of the irradiated field is suppressed by pairs of conductive vertical diaphragms between individual slots and forming vertical fins (see Fig. 1). The described research was supported by the Internal Grant Agency of University of Pardubice, the project No. SGSFEI_2015004.	The L band (1.03 – 1.09 GHz) secondary radar antenna is made up of 27 identical antenna columns each containing a vertical feeder and eight radiators, creating the same vertical antenna pattern. The feeders are closed in the mentioned vertical fins of the primary antenna. The SSR antenna columns are fed by a horizontal feeder, creating the three standard horizontal beams: the sum, the difference and the control beam of the secondary radar. The design of the whole integrated antenna in more details is described in (Bezousek, 2014).  
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block is possible to use without need to design several types of transmitters. The next advantages of using of one transmitter type (compare too many transmitter types) are: lower cost and better maintenance.  

 
Fig.	3:	The phase synthesis; top: array factor computed from determined amplitude and phase weights by the phase synthesis; bottom left: amplitude weights; bottom right: phase weights (Shejbal, 2014) 

These reasons are why the phase synthesis amplitude and phase coefficients were chosen for next design of the transmitted signal distribution network. Phases of each output are listed in (Shejbal, 2014). 
3.	PSR	antenna	array	feeders	Fig. 4 shows a flowchart of a PSR antenna (for better understanding of following description). The PSR antenna has 32 slotted waveguide rows with inter-element spacing 60 mm. Each horizontal waveguide row creates an identical horizontal radiation pattern (Chyba, 2013). All rows are fed by a transmitted signal manifold and form a vertical radiation pattern. Each horizontal array has its own receiver unit. Signals from the 1st and 2nd local oscillator are distributed to each receiver module by two independent distribution networks. These signals are used for down conversion of signals from a received frequency band to a lower frequency band, for next signal processing. 

	

 
Fig.	4:	The flowchart of PSR antenna array (each distribution is marked by dark grey color)  The last distribution network is used for calibrating of the antenna array. There is used loop with gain control of each transmitter unit for compensation of amplitude and phase deviations. Deviations are founded during the calibration 

process. The calibration process occurs in the blind zone (time between transmitting a pulse and echoes from near objects). The requirements on each signal manifold are listed in Table 1.  
Table	1: Required parameters for each manifolds. signal manifold bandwidth [GHz] amplitude distribution phase distribution transmitted 2.7 – 2.9 equal in  0(Shejbal, 2014) control 2.7 – 2.9 equal equal 1st  LO 2.05 – 2.25 equal equal 2nd LO 0.61 equal equal  Because the equal amplitude weights and the number of horizontal rows (power of two) are considered, the equal power dividers could be used for the next design. The vertical distribution network scheme is shown in Fig. 6. The Wilkinson power dividers (Pozar, 2009) with equal signal splitting are 

used at each feeding network. Each signal manifold contains 31 power dividers. 
3.1.	Transmitted	signal	manifold	
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previous manifolds; only the frequency band has been changed. The amplitude deviations are the lowest from all distribution networks and they are same for selected frequencies. The phase differences are close to each other at selected frequencies. Low phase deviations are able to compensate in digital form (similarly as in case of the 1st signal feeder).  
Table	4:	Standard deviations of 1st LO manifold outputs (computed from measured data at each output) S21 standard deviations frequency [GHz] 2.05 2.15 2.25amplitude [dB] 0.39 0.76 0.60phase [deg] 9.51 5.99 5.52 
Table	5:	Standard deviations of 2nd LO manifold outputs (computed from measured data at each output) S21 standard deviations frequency [MHz] 560 610 660amplitude [dB] 0.06 0.06 0.06phase [deg] 6.11 6.31 6.07
5.	Conclusion	The integrated antennas of primary surveillance radar and monopulse secondary surveillance radar have been described. This topology has advantage in better mobility, lower height and better sufficient earth reflection suppression because of high SSR aperture. Two main synthesis methods have been discussed: the Fourier and the phase synthesis. The goal is to achieve sufficient radiation pattern with preservation of practical amplitude and phase distribution. It is important for further design of transmitted signal distribution networks. The design of the transmitted and the control signal distribution networks have been described. Design of signal feeders of the 1st and 2nd local oscillator has been also investigated. Each manifold consists of the same type of the power divider – Wilkinson power divider. A few photos of dividers and manifolds have been shown in the paper. The measurement of feeding networks has been described and results have been discussed. All manifolds are, after described corrections, mounted in PSR antenna array and these parts work suitably well. 
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